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ABSTRACT
In the industrial domain, logs are widely applied in the management and maintenance of software 
systems to ensure reliability and availability. Furthermore, in the research field, various deep learning 
methods such as CNNs, LSTMs, and Transformers have been reported to achieve high accuracy in 
anomaly detection studies. However, there are challenges to their adoption in development fields. 
One reason is the limited datasets used in research, which lack a comprehensive evaluation for 
general applicability. To address this, we have prepared metrics to assess the complexity of log 
datasets necessary for creating a log generator for research purposes. We conducted a comparative 
study on the complexity of datasets in both research and industrial domains. Our evaluation of log 
sequence complexity, using frequency of occurrence and the Gini coefficient, showed that industrial 
logs are more complex across all metrics. This highlights the increased need for datasets close to 
the industrial domain for research purposes. Our study's findings suggest that a clear metric for 
dataset complexity can be achieved by converting logs into templates and then into sequences 
of size 10, evaluated using the Gini coefficient or kurtosis. Future work will involve developing 

a generator that produces logs close to those 
found in development environments, using these 
metrics as target values.

Keywords: Anomaly detection, complexity, evaluation 
index, log generator, system log

INTRODUCTION

Logs record vital information during 
system execution. In the industrial domain, 
particularly within large-scale systems, logs 
are extensively used to manage and maintain 
software systems to ensure reliability and 
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availability. In the research field, various deep learning methods such as CNNs (Du et al., 
2017; Lu et al., 2018), LSTM (Meng, et al, 2019; Zhu et al, 2020), and Transformers (Guo 
et al, 2022; Nedelkoski et al, 2021) have been applied to anomaly detection studies. While 
these studies report high accuracy, there are challenges in their adoption in development 
fields (Le et al, 2022). One commonly used dataset in log anomaly detection research 
is Loghub (Zhu et al, 2023), which includes logs from multiple operating systems and 
applications such as HDFS (a distributed system), BGL (a supercomputer), and ThunderBird 
(a supercomputer). However, Loghub has only a few types of labeled logs, and there are 
only one or two instances of each type. This has raised concerns about the scarcity of 
datasets (He et al, 2022). For example, a study investigating the contents of the BGL dataset 
reported that specific logs were streaming continuously, and a particular log sequence 
pattern (e.g., logs extracted with a window size of 10 and stride of 1) accounted for about 
40% of the total (Uchida et al, 2023). While this trend is frequent in system and server 
logs, it significantly differs from logs produced by systems comprising applications and 
operating systems that form a large part of societal systems. This discrepancy suggests a 
potentially significant difference in the complexity of anomaly detection problems.

Therefore, we believe that the choice of dataset is crucial for advancing log anomaly 
detection research that is also effective in development fields. However, publicly sharing 
logs from the development and post-development stages is challenging due to various rights. 
Our research aims to create logs as close as possible to those found in development fields.

In this study, we conducted the following investigations to develop a log dataset 
generator that closely resembles those in development environments:

1.	 Development of evaluation metrics to assess the complexity of log datasets.

2.	 Investigation of the differences in complexity between research log datasets and those 
from development environments using the metrics developed in point 1.

METHODS

Datasets

This discussion introduces the research dataset and the logs from the development fields 
used in this experiment.

Dataset in Research Fields

The dataset in the research fields utilized the Loghub dataset, commonly used in studies 
on log anomaly detection. Loghub contains a variety of datasets, such as operating 
systems and servers. We selected "Mac", "Linux", "Windows", "Android_v1", "BGL", 
and "Thunderbird" for our study. We applied a restriction for datasets exceeding 5,000,000 
lines by removing logs beyond the 5,000,000th line.
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Logs in the Development Fields

The logs from the development environment were extracted from a system presently 
undergoing development. This system is composed of multiple applications operating on 
a specific operating system, and the logs analyzed in this study originated from the output 
of these diverse systems. Specifically, the three logs utilized were denoted as "Dev_v1," 
"Dev_v2," and "Dev_v3," respectively.

Evaluation Metrics for Measuring Complexity

This discussion introduces the metrics used in this experiment to evaluate log complexity. 
As there is no standardized metric for assessing the complexity of logs, we compiled various 
metrics used across different datasets. Additionally, we set the following conditions for 
complexity in this experiment: If specific logs are continuously output or the number of 
specific logs is disproportionately high compared to the total logs, we consider the dataset's 
complexity low. 

This is because complex systems that include an OS and multiple applications, specific 
logs are not continuously output; instead, various types of logs are generated concurrently. 
Thus, a balanced distribution of different types of logs indicates higher complexity. Under 
this condition, we used the frequency of each log type to measure complexity using various 
metrics.

Evaluation Metric 1: Number of Logs Per Second

One of the metrics we used is the number of logs per second. We assumed that the more 
logs and types per second, the more complex the system and the dataset. To determine 
whether a dataset is complex because of a high number of logs at specific times and due 
to a consistently high number of logs, we investigated the number of logs per second.

We calculated using the time part of each log format. Furthermore, as complexity 
metrics, we used the calculated number of logs per second to find the average, population 
standard deviation (pstdev), median, maximum, and minimum values.

The evaluation of complexity for each metric is as follows:

1.	 Mean and Standard Deviation: If the average is high and the standard deviation is low, 
it indicates that the variance in the number of logs per second is small and the average 
is high, suggesting a high complexity without bias.

2.	 Max, Min, Mean, Median: If there is a significant difference between the max and 
min values, and they are far from the mean and median, it indicates high complexity.
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Evaluation Metric 2: Percentage of Data Types in Total Data Count (PDT)

Log type refers to the number of different types of data. In this study, there are three main 
data types: (1) original logs, (2) templates, and (3) sequence data. The "percentage of data 
types in total data count" is evaluated by dividing the total number of types by the total 
number of data points for these data types. A higher value indicates the presence of a larger 
variety of data types, suggesting higher complexity in the system.

Evaluation Metric 3: Frequency of Occurrence

We calculate the frequency of occurrence for each log type and use the average and standard 
deviation of these frequency values as complexity indicators. If the variation in frequency 
values is small, it is assumed that a variety of logs are being produced in large quantities, 
indicating high complexity.

Evaluation Metric 4: Kurtosis

Kurtosis is a statistical measure that characterizes the shape of a probability distribution, 
measuring the thickness of the tails and the sharpness of the central peak of the distribution. 
It allows us to assess how sharp the peak of the distribution is and how thick the tails are 
(DeCarlo et al., 1997).

In this experiment, kurtosis is calculated using the frequency of occurrence of each 
log as input. As a preprocessing step, we prepare two sequences of frequency values: one 
sorted in ascending order and the other in descending order, and then concatenate them to 
form a convex graph. This process enables the measurement of the kurtosis of frequency 
occurrence. A kurtosis greater than zero indicates that the distribution is sharper than a 
normal distribution, suggesting that certain logs occur frequently and there is bias in the 
data. Conversely, if kurtosis is less than zero, the distribution is not as sharp as a normal 
distribution and has wider tails, indicating less bias in frequency occurrence. The calculation 
formula (Fisher's definition) is as Equation 1:
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Evaluation Metric 5: Gini Coefficient

The Gini coefficient is a measure of inequality commonly used in economics, ranging from 
0 (complete equality) to 1 (complete inequality) (Sen et al., 1973). In this experiment, the 
Gini coefficient is calculated using the frequency of occurrence of each log as input. When 
the Gini coefficient is close to 0 (complete equality), it indicates a low bias in frequency of 
occurrence, suggesting high complexity in the dataset. Conversely, when the Gini coefficient 
is close to 1 (complete inequality), it indicates a high bias in the dataset, suggesting low 
complexity. In this experiment, we used the simplified formula in Equation 2:

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 2∑ 𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
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   represents the total number of data points.

Evaluation Metric 6: Entropy

In the field of information theory, entropy is used to represent the uncertainty of data 
(Shannon et al., 1948). In this experiment, entropy is calculated using the frequency of 
occurrence of each log as input. High entropy indicates that the frequency of occurrence is 
relatively evenly distributed, suggesting high complexity. Low entropy indicates that a few 
logs occur frequently, suggesting low complexity. As a preprocessing step, the frequency of 
occurrence of each log is converted into a probability by dividing by the total frequency of 
occurrence. The preprocessing and the formula for calculating entropy are as Equation 3:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −�𝑝𝑝(𝑥𝑥𝑖𝑖) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2�𝑝𝑝(𝑥𝑥𝑖𝑖)�[3] 	 [3]

where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −�𝑝𝑝(𝑥𝑥𝑖𝑖) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2�𝑝𝑝(𝑥𝑥𝑖𝑖)�[3]  represents the probability of each data point.

Evaluation Metric 7: Mean Absolute Deviation (MAD)

This metric represents how far data points are from the mean value. MAD, like the mean, 
indicates the central tendency of data but is less influenced by outliers (Huber et al. 1981). 
A small MAD indicates that the frequency of occurrence of logs is average, suggesting 
high complexity in the dataset (Equation 4):
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𝑁𝑁
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𝑖𝑖=1   	 [4]
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where N is the size of the dataset, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =  
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value of the dataset.

Experimental Procedure

To explore appropriate methods for investigating the complexity of log datasets, this study 
processed logs and converted them into the following five types of data analysis:

1.	 Original logs

2.	 Histogram of original logs (frequency of occurrence)

3.	 Histogram of log sequence data (frequency of occurrence)

4.	 Histogram of log templates (frequency of occurrence)

5.	 Histogram of log template sequence data (frequency of occurrence)

Experimental Procedure 1: Original Logs

In the complexity evaluation experiment of the original logs, we extract the contents part of 
the logs produced by each system and treat them as different logs if even one character in 
the string varies. For example, as shown in Table 1, logs Id1 to Id3 are considered different 
logs even though they only differ in parameters (numbers). This experiment investigates 
Metrics 1 (number of logs per second) and Metric 2.

Table 1 
Examples of original logs

Id Log
1 ddr: activating redundant bit steering: rank=0 symbol=25
2 ddr: activating redundant bit steering: rank=0 symbol=9
3 ddr: activating redundant bit steering: rank=0 symbol=23
4 1 ddr errors(s) detected and corrected on rank 0, symbol 2, bit 5
5 1 ddr errors(s) detected and corrected on rank 0, symbol 2, bit 0
6 30 ddr errors(s) detected and corrected on rank 0, symbol 9, bit 6

Experimental Procedure 2: Histogram of Original Logs (Frequency of Occurrence)

In this experiment, the complexity of original logs is evaluated by extracting the contents 
part of logs from each system and treating them as different logs if even one character in 
the string varies. Metrics 3 to 7 are investigated using the frequency of occurrence for logs.

Experimental Procedure 3: Log Sequence Data

The data uses the contents part of logs produced by each system, similar to Experimental 
Procedure 1. This data is converted into sequence data using a windowing process 
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(Window=10, Slide=1) from the chronological order in which the logs are output. These 
size 10 log sequence data are treated as one piece of data, and those that differ as sequences, 
as shown in Table 2, are treated as different data. Metrics 3 to 7 are investigated.

Table 2 
Examples of log sequence data

Id Log Sequence Data
1 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
2 [2, 2, 2, 2, 2, 2, 2, 2, 2, 4]
3 [3, 3, 2, 2, 3, 2, 3, 2, 3, 2]

Experimental Procedure 4: Log Templates
Log templates extract and represent the common structure of the contents part of logs 
in a reusable format. They are commonly used as inputs for log analysis tools and deep 
learning models for anomaly detection. Templates differentiate between the variable parts 
(variables) and constant parts (constants) in a message, as shown in Table 3, with variable 
parts represented by <*>. In this study, we used Drain (He et al., 2017), a highly accurate 
tool for extracting parameters and creating templates. Drain employs a tree-structured 
learning technique with several parameters, including a threshold. For this experiment, 
we used the same parameters as those in a paper that investigated the accuracy of various 
DL models for log anomaly detection (Chen et al., 2022). The parameters used are shown 
in Table 4. Experimental Procedure 4 investigates Metrics 2 to 7.

Table 3 
Examples of log templates

Id Log Template
1 ddr: activating redundant bit steering: rank=0 <*>
2 <*> ddr errors(s) detected and corrected on rank 0, symbol <*> bit <*>
3 CE sym <*> at <*> mask <*>

Table 4 
Drain parameters used in this study

Dataset type Regex Similarity 
threshold

Depth of all 
leaf nodes

BGL [r'core\.\d+'] 0.5 4
Android [r'(/[\w-]+)+', r'([\w-]+\.){2,}[\w-]+', r'\b(\-?\+?\d+)\b|\

b0[Xx][a-fA-F\d]+\b|\b[a-fA-F\d]{4,}\b']
0.2 6

Thunderbird [r'(\d+\.){3}\d+'] 0.5 4
Windows [r'0x.*?\s'] 0.7 5
Linux [r'(\d+\.){3}\d+', r'\d{2}:\d{2}:\d{2}'] 0.39 6
Mac [r'([\w-]+\.){2,}[\w-]+'] 0.7 6
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Experimental Procedure 5: Sequence Data of Log Templates

Similar to Experimental Procedure 3, the data uses the contents of the logs produced 
by each system, and converts them into templates. These templates are converted into 
sequence data using a windowing process (Window=10, Slide=1) from the chronological 
order in which the templates are output. These size 10 template sequence data are treated 
as one piece of data, and those that differ as sequences, as shown in Table 5, are treated as 
different data. Metrics 3 to 7 are investigated.

Table 5 
Examples of log template sequence data

Id Log Template Sequence Data
1 [47, 47, 47, 47, 47, 47, 47, 47, 47, 26]
2 [47, 47, 47, 47, 47, 47, 47, 47, 47, 47]
3 [47, 47, 47, 47, 47, 48, 48, 48, 48, 48]

RESULTS

Experiment 1: Original Logs

We assessed the information quantity introduced in Experimental Procedure 1 using 
evaluation criteria 1 to 2. According to the definition original logs are treated as distinct 
logs if they do not fully match; each log is assigned a unique ID. 

The results for each system are shown in Table 6. The criteria for high complexity 
include a high mean value, a small difference between the mean and median values, and 
small differences between the mean and the maximum and minimum values. The datasets 
that most closely meet these criteria are BGL and the three development field datasets. Linux 
has a small variance in the number of logs per second, but it is considered less complex 

Table 6 
Results of evaluation metrics 1 and 2 in Experiment 1

Dataset 
Name

Number of logs per second PDT Component
mean pstdev median max/min

Mac 5.633 31.524 2 399 / 7 0.394 126
Linux 1.658 2.844 1 53 / 1 0.442 72
Windows 906.668 3855.942 18 35411 / 1 0.042 13
Android_v1 75.538 166.253 26 2568 / 1 0.180 1756
BGL 15.744 22.204 7 393 / 1 0.076 14
Thunderbird 7.862 58.545 3 10246 / 1 0.083 173
Dev_v1 402.952 402.509 163 1663 / 2 0.352 765
Dev_v2 61.113 78.237 36 379 / 1 0.375 11
Dev_v3 21.520 48.225 2 304 / 1 0.793 106
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due to the low average number of logs. Other datasets have a large standard deviation and 
a significant difference between the mean and maximum values, indicating that logs are 
produced in large quantities at specific times, leading to a lower complexity rating.

Next, we summarize the results for the metric ratio of types to total log count. This 
metric investigates the diversity of log types within the dataset. Among the systems studied, 
Mac, Linux, and the three development field systems show relatively less bias in the types 
of logs.

Experiment 2: Histogram of Original Logs (Frequency of Occurrence)
We assessed the information quantity introduced in Experimental Procedure 1 based on 
evaluation criteria 3 through 7. According to the definition that original log histograms 
treat each log as a distinct entity unless they are an exact match, the histograms of each 
log are considered the sources of information.

Tables 7 and 8 show the results for each system. A notable result across all systems 
is that the median value is close to 1, indicating that most logs are infrequently produced 
(Table 7). Systems with a small difference between the mean and maximum values and a 
small standard deviation are Mac, Linux, and the three development field systems.

The systems with high complexity, as listed in Table 8, are summarized below:

1.	 Kurtosis: Mac, Linux, and the three development field systems are relatively complex. 
Notably, Development v2 and v3 show even less bias in frequency of occurrence 
compared to the other three.

2.	 Gini coefficient: Development v3 shows significantly less bias compared to the others.

3.	 Entropy: The results were almost identical across all systems.

4.	 Mean absolute deviation: Systems with relatively less bias are Mac, Linux, and the 
three development field systems.

Table 7 
Results of evaluation metrics 3 in Experiment 2

Dataset Name Histogram
mean pstdev median max min

Mac 2.537795 28.07699 1 2397 1
Linux 2.262353 11.82191 1 1043 1
Windows 23.86387 140.1128 4 34668 1
Android_v1 5.566029 131.1742 1 27822 1
BGL 13.1531 498.9645 1 152734 1
Thunderbird 12.08394 1126.886 1 382340 1
Dev_v1 2.838861 24.58524 1 2165 1
Dev_v2 2.663655 21.73202 1 387 1
Dev_v3 1.261637 1.853959 1 42 1
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Table 8 
Results of evaluation metrics 4 to 7 in Experiment 2

Dataset Name Kurtosis Gini coeff Entropy Mean abs dev
Mac 2138.922004 0.597588 11.96984 2.798122
Linux 5400.675048 0.521918 11.93911 2.095992
Windows 22940.91372 0.84988 14.62374 34.60172
Android_v1 14445.56889 0.811196 12.55274 8.451361
BGL 50994.03783 0.871437 13.26365 19.65518
Thunderbird 57462.50936 0.916109 8.629199 21.82688
Dev_v1 4434.076893 0.625783 11.23046 3.178633
Dev_v2 243.0334853 0.619438 7.827793 3.143811
Dev_v3 359.0682511 0.198355 9.90051 0.474979

Experiment 3: Log Sequence Data

We assessed the information quantity introduced in Experimental Procedure 3 using 
evaluation criteria 3 to 7. The log sequence data refers to sequence data generated by 
applying window processing to the logs in chronological order.

Looking at Table 9, it is observed that the three Development Field datasets have a small 
difference between the mean and standard deviation, indicating a low bias in frequency of 
occurrence. The systems with high complexity listed in Table 10 are summarized below: 

1.	 Kurtosis: Linux, Windows, and the three Development Field systems show low values, 
indicating relatively high complexity.

2.	 Gini Coefficient: Mac and Development v1, in particular, show significantly less 
bias compared to others. Compared with the results of the log data in Experiment 
2, the values for Mac, Linux, Development v1, and v2 have significantly decreased. 
The evaluation of log sequences measures whether the same logs are being output 
consecutively, so systems with low values indicate that logs are output in various 
orders, suggesting high complexity for anomaly detection datasets.

3.	 Entropy: The results were almost identical across all systems.

4.	 Mean Absolute Deviation: Systems with relatively less bias include Mac, Linux, and 
the three Development Field systems.

Table 9 
Results of evaluation metrics 3 in Experiment 3

Dataset Name Histogram of Log Sequence Data
mean pstdev median max min

Mac 25.692 186.8841 1 7685 1
Linux 50.912 501.259 8 10404 1
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Dataset Name Histogram of Log Sequence Data
mean pstdev median max min

Windows 1412.275 42682.57 1 1750733 1
Android_v1 99.82051 824.7748 3 40942 1
BGL 2550.591 42936.94 1 1706751 1
Thunderbird 4928.063 32883.25 45 660553 1
Dev_v1 8.265135 50.03262 1 2165 1
Dev_v2 88.84932 356.4681 2 2081 1
Dev_v3 2.655405 9.642574 1 147 1

Table 10 
Results of evaluation metrics 4 to 7 in Experiment 3

Dataset Name Kurtosis Gini coeff Entropy Mean abs dev
Mac 29835.69004 0.023354 16.56222 0.047615
Linux 696.3898193 0.159301 14.02642 0.371192
Windows 266.4154937 0.813842 15.48659 18.17317
Android_v1 188736.1726 0.199083 19.14314 0.48477
BGL 397543.7988 0.578114 17.0855 2.614236
Thunderbird 3040665.057 0.297249 20.00339 0.817167
Dev_v1 1893.53867 0.089784 14.95477 0.194578
Dev_v2 244.9009545 0.946071 12.66111 46.71347
Dev_v3 472.3838329 0.141798 10.59842 0.321129

Experiment 4: Log Templates

We assessed the information quantity introduced in Experimental Procedure 4 using 
evaluation criteria 2 to 7. The log template refers to data in which the common components 
of each log are templated using a Log Parser.

Tables 11 and 12 present the results for each system. The three development field 
datasets have a small difference between the mean and standard deviation, indicating a 
low bias in frequency of occurrence (Table 11). Compared to the original logs (Experiment 
2), the differences between systems in mean values and standard deviations become more 
discernible.

The systems with high complexity, as listed in Table 12, are summarized below:

1.	 Kurtosis: Thunderbird and Development v1, v2 show low values, indicating relatively 
high complexity.

2.	 Gini coefficient: Development v1 and Development v2 have significantly less bias 
compared to others.

Table 9 (continue)
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3.	 Entropy: It is observed that the values for Android, Development v1, and Thunderbird 
are relatively high.

4.	 Mean absolute deviation: Development v1 and Development v2 show significantly 
less bias compared to others.

Table 11 
Results of evaluation metrics 2 and 3 in Experiment 4

Dataset Name Histogram of Templates Template 
typesmean pstdev median max min

Mac 25.692 186.8841 1 7685 1 4000
Linux 50.912 501.259 8 10404 1 500
Windows 1412.275 42682.57 1 1750733 1 3538
Android_v1 99.82051 824.7748 3 40942 1 14898
BGL 2550.591 42936.94 1 1706751 1 1848
Thunderbird 4928.063 32883.25 45 660553 1 1013
Dev_v1 8.265135 50.03262 1 2165 1 5137
Dev_v2 88.84932 356.4681 2 2081 1 73
Dev_v3 2.655405 9.642574 1 147 1 592

Table 12 
Results of evaluation metrics 4 to 7 in Experiment 4

Dataset Name Kurtosis Gini coeff Entropy Mean abs dev
Mac 779.8136527 0.929228 7.674175 44.10432
Linux 364.3586554 0.892429 4.195259 81.88374
Windows 1585.393851 0.997397 2.692711 2781.577
Android_v1 979.8777736 0.930228 9.664662 160.5336
BGL 1348.354829 0.987413 4.268589 4760.467
Thunderbird 192.1112006 0.931104 8.629199 7907.527
Dev_v1 785.1040542 0.817377 9.223006 11.61492
Dev_v2 18.75473595 0.930945 2.475725 157.9384
Dev_v3 125.3654616 0.585244 7.409572 2.678757

Experiment 5: Sequence Data of Log Templates

We assessed the information quantity introduced in Experimental Procedure 5 using 
evaluation criteria 3 to 7. The sequence data of log templates refers to data generated by 
applying window-based grouping to log template data extracted using a Log Parser in 
chronological order. 

Tables 13 and 14 show the results for each system. The three development field 
datasets have a small difference between the mean and standard deviation, indicating a 



173Pertanika J. Sci. & Technol. 33 (S4): 161 - 177 (2025)

Differences Between Log Datasets in Research and Industrial Fields

low bias in frequency of occurrence (Table 13). Compared to the histogram of templates 
(Experiment 4), the differences between systems in terms of mean values and standard 
deviations become even more apparent.

The systems with high complexity, as listed in Table 14, are summarized below:

1.	 Kurtosis: The three development field systems show low values, indicating relatively 
high complexity.

2.	 Gini coefficient: Mac, Development v1, and Development v2 show significantly less 
bias compared to others.

3.	 Entropy: Linux, Windows, Thunderbird, and Development Field sub1 show high 
complexity.

4.	 Mean absolute deviation: Development v1 and Development v2 show significantly 
less bias compared to others.

Table 13 
Results of evaluation metrics 3 in Experiment 5

Dataset Name Histogram
mean pstdev median max min

Mac 1.599437 16.32902 1 3921 1
Linux 4.768928 135.1905 1 9584 1
Windows 231.894 16117.76 1 1663366 1
Android_v1 1.70683 38.48374 1 27045 1
BGL 29.85183 4498.018 1 1679174 1
Thunderbird 4.095916 202.1167 1 128936 1
Dev_v1 1.315677 3.431559 1 202 1
Dev_v2 7.9375 27.24916 1 248 1
Dev_v3 1.029644 0.229087 1 6 1

Table 14 
Results of evaluation metrics 4 to 7 in Experiment 5

Dataset Name Kurtosis Gini coeff Entropy Mean abs dev
Mac 51686.09081 0.363217 14.66522 1.076106
Linux 4728.412527 0.768955 6.918843 6.516396
Windows 10354.70923 0.99097 4.084183 439.5919
Android_v1 292478.0814 0.405236 17.67513 1.277801
BGL 123606.2519 0.959574 6.279894 54.35098
Thunderbird 326215.3618 0.73049 16.12383 5.316484
Dev_v1 846.0012814 0.234677 14.29795 0.58936
Dev_v2 30.80765436 0.813872 7.034099 11.55499
Dev_v3 176.9035518 0.028296 10.54513 0.058
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DISCUSSIONS

Evaluation Metrics
Firstly, regarding the transformation process of the datasets used, it was found that templates 
show a greater difference in metrics than original logs, making it easier to evaluate 
complexity. Moreover, converting to histogram sequence data rather than dealing with 
original logs or templates line by line clarified the differences in complexity. Converting to 
templates, which treat logs of the same format differing only in parameters, equally suggests 
that it is crucial to investigate datasets while preserving their significant parts. The reason 
sequence data showed clearer differences in complexity is likely due to the issue reported 
in related studies that "research datasets contain many consecutive logs," allowing us to 
identify biases in the frequency of specific sequence data occurrences.

These results suggest that the sequence data of templates is informative for evaluating 
dataset complexity, which is necessary for researching machine learning systems usable 
in the industrial domain. 

As for which metrics are suitable, while consideration is needed for the number of 
data and types of logs regarding the average and variance of occurrence frequencies, it is 
clear that they can be easily evaluated. 

Next, we discuss the development environment logs under the assumption that they 
are highly complex due to the system’s inherent complexity. As shown in the results in 
Table 14, kurtosis and the Gini coefficient indicate that the development environment logs 
are more complex. In contrast, entropy produced different results. Based on these findings, 
kurtosis and the Gini coefficient are deemed appropriate metrics for evaluating complexity.

Kurtosis tends to exhibit extremely high values, particularly when a small number of 
data categories dominate, which can amplify differences between datasets. However, it is 
important to recognize that kurtosis primarily indicates how closely a distribution aligns 
with a normal distribution. Therefore, it should be applied cautiously when evaluating 
whether individual data logs are evenly distributed on average. While kurtosis is useful 
for identifying outliers and understanding distributional characteristics, its interpretation 
requires careful consideration, especially in contexts involving non-normal data 
distributions (Kim & White, 2004).

In contrast, the Gini coefficient directly measures inequality within a dataset and 
effectively quantifies the uniformity of data outputs. Gastwirth (1972) noted that the Gini 
coefficient provides a clear and straightforward metric for determining whether outputs 
are evenly distributed across categories. This characteristic makes the Gini coefficient 
particularly well-suited for evaluating the fairness or uniformity of data outputs, thereby 
complementing kurtosis-based analysis.

By integrating both metrics into the methodology, kurtosis highlights the sharpness of 
the distribution, whereas the Gini coefficient evaluates its equality. Together, these metrics 
enable a more comprehensive assessment of data characteristics.
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Differences in Data Characteristics: Research Datasets vs. Industrial Logs

The results from all metrics used in this study showed that logs from development fields 
exhibited higher complexity. This confirms that there is indeed a difference between 
research datasets and industrial logs. This discrepancy poses a significant challenge for 
current research in log anomaly detection, highlighting the need to create research datasets 
closer to those in the industrial domain.

CONCLUSION

In this study, we investigated metrics to evaluate the complexity of datasets. We examined 
the differences between research datasets and logs from development environments, aiming 
to create anomaly detection datasets in logs closer to those in industrial domains. Based 
on our investigations, we found the following approaches to be suitable:

1.	 Using sequence data derived from the frequency of occurrences in log templates.

2.	 Using mean, variance, kurtosis, and Gini coefficient based on the frequency of 
occurrences as evaluation metrics.

Logs from industrial domains showed higher complexity in all evaluation metrics 
prepared for this study. Similar to findings in reference studies, these results indicate 
that current research datasets are significantly different from those in industrial domains, 
underscoring the need for research datasets closer to the industrial context.

Future work will involve creating an automatic log generator that can be used for 
research, with the evaluation metrics identified in this study serving as target values. 
Furthermore, in this study, we only evaluated each complexity metric independently. 
For example, template types and the evaluation of the Gini coefficient for frequency of 
occurrences in template sequences reflect different aspects of complexity, namely the 
diversity of template types and the complexity of the log sequences, respectively. Therefore, 
to measure the overall complexity of a dataset, it is necessary to observe the balance of each 
complexity, making creating a comprehensive evaluation method a task for future research.
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